x^2+1685x+709771=0

Simple and best practice solution for x^2+1685x+709771=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+1685x+709771=0 equation:



x^2+1685x+709771=0
a = 1; b = 1685; c = +709771;
Δ = b2-4ac
Δ = 16852-4·1·709771
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1685)-\sqrt{141}}{2*1}=\frac{-1685-\sqrt{141}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1685)+\sqrt{141}}{2*1}=\frac{-1685+\sqrt{141}}{2} $

See similar equations:

| x^2+1686x+709771=0 | | x^2+1686x+710134=0 | | x^2+1685x+710134=0 | | x^2+1688x+710134=0 | | g^2-515g+87545=744552 | | c^2=55 | | 33333333g=2222 | | -4-7x=-6x-11 | | 4x+73=7 | | 1.3*10^-3=x^2/1.25-x | | 9(2k+3)=k+ | | P(x)=-0.23x+20 | | (X+40°)+x=180 | | -4-7x=-6-11 | | 12+9x+4=48 | | 8+(-n)+(-2)=17 | | −4−7x=−6x−11 | | X/8-x/16+9=x+9 | | 2+17+65=65+2+x | | 2y-27=y+18 | | 350=10000r12 | | 5x=(3x+1+6x+1)/2 | | 5x=(3x+1+6x+1)÷2 | | 350=1000r12 | | 6m-12=0 | | 4/3a-1/12a+13/6=8/3 | | z+6.1=0.5(0.4)/0.35-0.6(z-6.63)/0.42 | | b^2-9b-9=0 | | 6x+11=6x+5) | | -3+3x=-2x+-2 | | 4x/12-9x/12=1/12 | | Y=-5x/3-2 |

Equations solver categories